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Calculating the scattering intensity of an N-atom system is a numerically

exhausting O(N2) task. A simple approximation technique that scales linearly

with the number of atoms is presented. Using an exact expression for the

scattering intensity I(q) at a given wavevector q, the rotationally averaged

intensity I(q) is computed by evaluating I(q) in several scattering directions. The

orientations of the q vectors are taken from a quasi-uniform spherical grid

generated by the golden ratio. Using various biomolecules as examples, this

technique is compared with an established multipole expansion method. For a

given level of speed, the technique is more accurate than the multipole

expansion for anisotropically shaped molecules, while comparable in accuracy

for globular shapes. The processing time scales sub-linearly in N when the atoms

are identical and lie on a lattice. The procedure is easily implemented and should

accelerate the analysis of small-angle scattering data.

1. Introduction
Small-angle scattering is an invaluable tool for probing the

nanoscale structure of matter. Small-angle X-ray and neutron

scattering have become versatile techniques used by structural

biologists, physical chemists and materials scientists to study

the shapes of molecules and the interactions between them.

As opposed to crystallography, small-angle scattering provides

the means to analyze the native structure of biomolecules in

solution under near physiological conditions. While methods

for determining the degree of folding (Kratky & Porod, 1949)

and overall size of particles (Guinier, 1939) have long been

established, the determination of three-dimensional molecular

shape from the one-dimensional scattering profile remains one

of the field’s greatest challenges.

The first of these attempts involved the construction of low-

resolution shapes described by spherical harmonics (Stuhr-

mann, 1970b; Svergun & Stuhrmann, 1991; Svergun et al.,

1997, 1996). With the advent of modern computing, molecules

can be modeled using arrangements of coarse-grained beads.

The scattering intensity of a given bead configuration is

explicitly calculated and compared with experimental data

(Chacón et al., 1998, 2000; Walther et al., 2000; Franke &

Svergun, 2009; Volkov & Svergun, 2003; Svergun, 1999;

Svergun et al., 2001). Using this ‘ab initio’ bead-modeling

approach, the shape of a molecule can (in principle) be

determined by calculating the scattering profile for a multi-

tude of candidate structures until a configuration that agrees

with the data is found. Combined with high-throughput

analysis pipelines, this has allowed for a turnover rate of 20

proteins per week (Hura et al., 2009). When the crystal

structures of individual domains are known, the structure of

multidomain proteins may be reconstructed by finding the

optimal interdomain arrangement which gives the best

agreement between theoretical calculations and the measured

scattering intensity (Putnam et al., 2007; Wall et al., 2000;

Petoukhov & Svergun, 2005, 2006; Förster et al., 2008; Konarev

et al., 2001). In addition to molecular shape, simulations of

atomically detailed systems can provide insights into the

structure of crowded solutions (McGuffee & Elcock, 2006;

Chaudhri et al., 2012; Mereghetti et al., 2010; Curtis et al., 2012)

and the dynamics of proteins (Lindorff-Larsen et al., 2012;

Monticelli et al., 2008). In all of these cases, the computational

cost of calculating the scattering intensity from atomic posi-

tions imposes a serious bottleneck on the interpretation of

experimental measurements.

2. Background

Determining the scattering profile of an N-atom system is

analytically straightforward. We use the term ‘atom’ loosely,

since it can also refer to coarse-grained beads. Using the

notation of Roe (2000), the scattering intensity IðqÞ for a

particular scattering orientation is given by

I qð Þ ¼ jA qð Þj2 ð1Þ

with amplitude

A qð Þ ¼
PN

j

bj expð�iq � rjÞ; ð2Þ

where bj is the generalized scattering length, AðqÞ represents

the normalized scattering amplitude, rj refers to atomic posi-
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tions, N is the number of atoms and q is the scattering vector.

The magnitude of the scattering vector q ¼ jqj is given by

q ¼ 4� sinð�Þ=�, where 2� is the scattering angle and � is the

wavelength of the incident radiation. Written in this way,

equations (1) and (2) can refer to both neutron and X-ray

scattering (where bj implicitly depends on q in the latter case).

When the solution is dilute and consists of one species,

intermolecular interactions are negligible and the sum in

equation (2) runs over all atoms within a single molecule.

However, in general the summation includes all atoms. When

there is no preferred molecular orientation, the observed

scattering intensity IðqÞ is the rotational average over all

orientations. Debye (1915) showed that integration over all

orientations gives

I qð Þ ¼
XN

j

XN

k

bjbk

sin qjrj � rkj
� �
qjrj � rkj

ð3Þ

[for a derivation see Warren (1990)]. Owing to the double

summation over atom pairs, the OðN2Þ calculation can be very

time consuming. For calculations based on fully atomistic data,

N can be as high as �106. Though molecules are represented

by only a few hundred beads in current ab initio bead-

modeling studies, potentially millions of possible configura-

tions must be tested (Chacón et al., 1998, 2000; Walther et al.,

2000; Franke & Svergun, 2009; Volkov & Svergun, 2003;

Svergun, 1999; Svergun et al., 2001). For either of these

applications, evaluating Debye’s formula is a formidable task,

even for large computer clusters (Gelisio et al., 2010).

Approximations are often employed for greater efficiency.

The most popular approach (Svergun & Stuhrmann, 1991;

Svergun et al., 1995; Stuhrmann, 1970a; Merzel & Smith, 2002)

employs a multipole expansion, truncating an infinite series at

L terms. Because of the mathematical properties of the

expansion, the rotationally averaged intensity can then be

easily calculated. The OðL2NÞ computational effort of this

technique grows linearly with the number of atoms, offering

considerable time savings. However, the processing time

grows quadratically with the number of harmonics L. The

method can be inaccurate for anisotropically shaped (i.e.

nonspherical) molecules using small (L<� 20) values of L [see

x4 and Gumerov et al. (2012)]. The multipole expansion

technique may also be inappropriate for systems of multiple

interacting proteins, which exhibit even greater anisotropy

and whose shape cannot be described by a single bounding

surface.

A second approach involves constructing a histogram of

atomic separations with a specified bin size (Pantos & Bordas,

1994; Pantos et al., 1996). The Debye formula then becomes a

sum over bins and scattering lengths for each magnitude q of

the scattering vector. The technique is fast when the number

of unique scattering lengths bjðqÞ is small compared to the

number of q values. This condition holds for neutron scat-

tering, where the scattering length does not depend on the

value of q. However, it is not the case for X-ray scattering. The

approximation is also limited by the initial OðN2Þ construction

of the histogram.

In this paper, we present a simple approximation method

for calculating the scattering profile of any system that can be

expressed as a collection of atoms or coarse-grained spheres.

Part of our technique is similar to a method used for analyzing

simulations of interacting ellipsoids (Sjöberg, 1999). We have

extended that approach to study systems of biological

complexity. Our technique relies on an exact OðNÞ expression

for the intensity IðqÞ at a given scattering vector q. We then

approximate the rotationally averaged scattering intensity by

evaluating IðqÞ in several scattering directions. The q vectors

describing each direction are generated using the golden ratio

and are isotropically distributed. At a given level of speed, our

method is more accurate than the multipole expansion tech-

nique (Svergun et al., 1995) for anisotropically shaped mol-

ecules, while equally accurate for globular shapes. This makes

our approach especially valuable for irregularly shaped and

intrinsically disordered proteins, whose structures cannot be

determined using crystallography. Though the multipole

expansion can be useful for modeling globular proteins, often

their overall shapes have already been determined in crys-

tallography studies. Our method can be further expedited

when the atoms are identical and lie on a lattice, which is

frequently the case with ab initio bead modeling and powder

diffraction studies. These advances mark an important prac-

tical step toward greater accuracy in structure determination

and the enhanced ability to compare atomistic descriptions of

molecules with small-angle scattering data.

3. Method

Our technique is based on the exact calculation of IðqÞ for a

specific scattering vector q. To obtain IðqÞ, first AðqÞ is

numerically computed and then its complex modulus is taken:

IðqÞ ¼ fRe½AðqÞ�g2 þ fIm½AðqÞ�g2. Using Euler’s formula, this

can be written as

I qð Þ ¼
hPN

j

bj cos q � rj

� �i2

þ

hPN
j

bj sin q � rj

� �i2

: ð4Þ

The calculation is OðNÞ as long as the quantities inside the

square brackets are numerically evaluated before being

squared. This result is exact and mathematically equivalent to

equations (1) and (2). The above formula is very convenient

for ab initio bead modeling since atoms can be relocated,

removed or added without recalculating the entire sums.

These operations are of OðNÞ complexity or greater when

using a histogram of atomic separations (Walther et al., 2000).

To our knowledge, equation (4) was first used by Sjöberg

(1999) for efficiently analyzing many-body simulations. The

structure factor of hard-sphere systems has also been calcu-

lated by taking the fast Fourier transform of the particle

positions (Frenkel et al., 1986). However, the discretization of

the positions may lead to numerical artefacts at moderate to

large values of q (Cannavacciuolo et al., 2002).

When the molecules adopt all possible orientations, the

rotationally averaged intensity IðqÞ may be obtained by

averaging IðqÞ over all scattering directions. While the scat-
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tering vector does not change in the actual experiment,

rotating a molecule for a fixed scattering vector is equivalent

to changing the scattering vector for a fixed molecular orien-

tation. We approximate IðqÞ by evaluating equation (4) for n

scattering vectors with magnitude q, and simply take the mean

result. The directions of the vectors are drawn from a quasi-

uniform lattice on a sphere (González, 2010). A similar lattice

was first used within the context of proteins by Svergun (1994),

where the number of points belongs to the Fibonacci sequence

f. . . 1; 2; 3; 5; 8; 13; 21; 34; . . .g. In contrast to the Fibonacci

method (Grishaev et al., 2010), our chosen procedure for

constructing the lattice allows the number of grid points n to

be more finely adjusted, where n can be any odd integer. The

scattering vectors are given by

q kð Þ
x ¼ q cos sin�1 2k=nð Þ

� �
cos 2�k=�ð Þ;

q kð Þ
y ¼ q cos sin�1 2k=nð Þ

� �
sin 2�k=�ð Þ;

q kð Þ
z ¼ 2kq=n;

ð5Þ

where k runs over f�ðn� 1Þ=2; . . . ; 0; . . . ; ðn� 1Þ=2g and

� ¼ ð1þ 51=2Þ=2 is the golden ratio. The orientations of the

vectors qðkÞ for various values of n are shown in Fig. 1. Note

that since q can be factored out of equation (5) the lattice only

needs to be generated once. The rotationally averaged

intensity is then approximated as

I qð Þ ¼
1

n

Xðn�1Þ=2

k¼ð1�nÞ=2

I½q kð Þ�

( )
: ð6Þ

The total computational effort of this procedure scales as

OðnNÞ. Repeating the calculation after adding, removing or

relocating an atom is an OðnÞ task. While the rotational

average may be performed using more sophisticated numer-

ical integration techniques (Poitevin et al., 2011; Bardhan et al.,

2009), these algorithms require more time to implement, and

the number of grid points is not as flexible. Equations (4)–(6)

are the main result of this paper, establishing a straightforward

technique for calculating scattering profiles at a fraction of the

computational cost. An implementation of the algorithm

for biological molecules can be downloaded at http://www.

smallangles.net/sassie/.

The accuracy of the ‘golden vector method’ depends on the

number of vectors n and the geometry of the molecule. As n

increases, the average over scattering directions becomes

more isotropic, leading to closer agreement with the Debye

formula [equation (3)]. For anisotropically shaped molecules,

the intensity IðqÞ is sensitive to the orientation of the scat-

tering vector q. To ensure accuracy, a larger value of n is

therefore generally required, compared with that required for

more spherical shapes. For a fixed range in q and a given

shape, more orientations are also needed for larger molecules.

This size effect vanishes for a perfectly spherical shape but

becomes relevant for anisotropic molecules. As an example,

consider a series of cubes of different sizes. Using the same

number of vectors n, the scattering profile of each cube will be

accurate up to a q value that decreases as the cube size

increases. If comparable accuracy for all profiles is desired up

to the same q value, n must be increased for the larger cubes.

However, for a series of spheres of different radii, IðqÞ does

not depend on n, and the size effect just described does not

exist. Geometric effects aside, the appropriate value of n can

be determined by comparing the corresponding scattering

profile with Debye’s formula (x4) or with IðqÞ using a larger n

(x5).

4. Application to biological molecules

The golden vector (GV) method was compared with Debye’s

formula and a multipole expansion (ME) technique (Svergun

et al., 1995) for four molecules: lysozyme [Protein Data Bank

(PDB) code 6lyz; Diamond, 1974], MCM (mini chromosome

maintenance complex) (PDB code 1ltl; Fletcher et al., 2003),

ferritin (PDB code 1fha; Lawson et al., 1991) and a 200 Å-long

fragment of double-stranded DNA (B form). Additional

residues were added to the unstructured portion of MCM

(Krueger et al., 2011). The DNA molecule consists of 60

random base pairs arranged along a straight line (Dijk &

Bonvin, 2009). Neutron scattering lengths were used for all

molecules (for X-ray scattering lengths visit http://www.

reflectometry.org/danse/docs/elements/). For simplicity, the

calculations were based on the positions of the C� atoms only,

while their scattering lengths were dictated by their respective

amino acid (Jacrot & Zaccai, 1981). The resulting scattering

profiles were very close to the all-atom intensities for

0 � q � 0:5 Å�1. Since there is no simple analog to C� atoms

for nucleotides, we used the positions of all atoms for DNA.

For each molecule, the number of atoms as well as the length

along the longest dimension (D) are listed in Table 1. The

largest dimension was determined by looping over all atomic

separations.

To quantitatively compare the GV and ME methods, we

determined the number of vectors/harmonics needed for each

approximation to agree with Debye’s formula at various

degrees of accuracy. Using m values of q equally spaced in the

range 0 � qi � 0:5 Å�1, n and L were increased until the
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Figure 1
The orientations of the scattering vectors qðkÞ generated in equation (5)
for n ¼ f15; 29; 51; 201g. Each qðkÞ is represented by a vector pointing
from the center of the unit sphere (cyan) to a point on its surface (blue).



average difference between the GV/ME approximations and

the Debye formula obeyed

1

m

X
qi

jIGV=ME qið Þ � Iexact qið Þj

Iexact qið Þ
� � ð7Þ

for � ¼ f10%; 7:5%; 5%; 2:5%g and m ¼ 20. Since the

deviation is the average over points, the exact value of m does

not affect the outcome. The �2 test was not used since it

requires error measurements from experimental data. To

calculate IMEðqÞ, we used equations (5) and (11) of Svergun

et al. (1995) and the same scattering lengths as above. Our

method of comparison is relatively strict, since many small-

angle scattering measurements have larger error bars in the

high-q region and do not always extend to q ¼ 0:5 Å�1. If the

range were 0 � qi � 0:3 Å�1, for example, fewer vectors/

harmonics would be necessary to yield the same level of

agreement with the Debye formula. The results of the analysis

are listed in Table 2 and are partially shown in Fig. 2.

For the GV technique, the number of vectors needed for a

given level of accuracy generally increases with the molecule’s

size and anisotropy. At 2.5% agreement with the Debye

formula, MCM has the highest n value. While ferritin and

lysozyme require roughly similar n values, DNA actually

requires the least. This can be understood by noting that IðqÞ

for a rod is highly peaked when q is perpendicular to the rod’s

axis (Roe, 2000). This situation occurs multiple times when q is

taken from an isotropic distribution.

For the ME method, the required number of harmonics

corresponds to the molecule’s size and shape in a more

straightforward way. Lysozyme and ferritin are globular and
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Figure 2
The scattering profiles of lysozyme, MCM, ferritin and a fragment of DNA. All curves are normalized by their zero angle value Ið0Þ. The images of each
molecule are not on the same scale. The red curves correspond to Debye’s formula [equation (3)]. The blue and green curves were obtained using the GV
approximation with different numbers of vectors n. The gray curves were calculated using an ME approach (Svergun et al., 1995) with L harmonics. Both
approximations improve as n and L increase, and become more accurate on shorter length scales. As listed in Table 2, the n=L values shown correspond
to specific levels of accuracy. For both approximation methods, the calculations corresponding to the dotted curves differ from Debye’s formula by an
average of 10%. For lysozyme, ferritin and DNA, the dash–dotted curves differ by 2.5%. For MCM, the dash–dotted lines are within 5%. The processing
times for each approximation are listed in Table 2. Note that, for a given level of accuracy � as measured by equation (7), the disagreement between the
ME approximation and the Debye formula grows monotonically with increasing q. It grows non-monotonically for the GV method.

Table 1
The molecules studied in this paper.

The label ðC�Þ denotes the use of C� atoms only. The overall size of each
molecule is described by D, its largest linear dimension.

Molecule Number of atoms (N) D (Å)

Lysozyme 129 (C�) 44
Ferritin 1764 (C�) 94
DNA 2460 205
MCM 3432 (C�) 373



can be modeled with a small set of harmonics. However, L

must be substantially increased for MCM and DNA. Note

that, in addition to its quasi-spherical shape, lysozyme requires

fewer harmonics because of its small size. This can be under-

stood with the same reasoning as in the previous section. For

each molecule, the required number of harmonics can be

estimated using information theory (Moore, 1980):

L ¼ qmaxD=�. Using qmax ¼ 0:5 Å�1 and the values of D from

Table 1, this equation gives L ¼ f7; 15; 33; 59g for lysozyme,

ferritin, DNA and MCM, respectively. These predictions are in

good overall agreement with the number of harmonics listed

in Table 2. However, that equation should only serve as an

estimate and does not take the desired level of accuracy or the

molecule’s geometry into account. For example, a perfect

sphere of any size can be exactly described by L ¼ 1.

The computer processing times for the GV and ME tech-

niques are listed in Table 2. Both the GV method and Debye’s

formula were programmed in Fortran. The ME approxima-

tions were calculated using CRYSON (Svergun et al., 1998).

The size of the grid used for defining the molecular envelope

within CRYSON was set to the minimum value. In order to

minimize contributions from peripheral tasks (e.g. reading

coordinate files, setting up data structures etc.) we subtracted

the wall clock time required for calculating IGV=MEðqÞ with

n ¼ 1 and L ¼ 1, respectively. Note that, while the GV tech-

nique calculates the in vacuo scattering due to the atoms

within each molecule, CRYSON also calculates the approx-

imate scattering intensity due to the displaced solvent and

hydration layer (Svergun et al., 1995, 1998). Thus for

computing the in vacuo scattering profile, the ME timings may

be reduced by �30% compared to those in Table 1 (an exact

comparison is not possible since the source code is unavail-

able). While the lysozyme and ferritin timings are comparable

between the two techniques, the GV method is about four

times faster than the ME approximation for DNA and eight

times faster for MCM at � ¼ 10 and 7.5%. For MCM, the GV

method is twice as fast as the ME technique for � ¼ 5%. For

the ME approximation to be within 2.5% agreement with the

Debye formula, the number of harmonics exceeds 50 and

cannot be calculated within CRYSON. Judging from these

four molecules, we generally expect that the two approxima-

tion methods are roughly equivalent for quasi-spherical

molecules, while the GV technique is more accurate and

efficient for anisotropic shapes.

In addition to specific molecules, we also examined how the

ME and GV methods scale with the number of atoms, n and L.

We generated configurations of N ¼ 104–106 atoms whose

positions were randomly assigned inside a sphere of average

number density � ¼ 0:02 Å�3. The radius was chosen to

correspond to the volume V for which N=V ¼ �. Each

‘molecule’ was written to a PDB file, with each atom desig-

nated as a C� (‘CA’). The wall clock times are shown in Fig. 3,

where IðqÞ was calculated for 20 values of q. Just as in Table 1,

the timings for n ¼ 1 and L ¼ 1 calculations were subtracted.

The timings for both the GV and ME methods are propor-

tional to the number of atoms. Owing to the OðL2NÞ effort of

the ME method, the timings rapidly increase for larger L.

Though not implemented here, the GV method may run even

faster by taking advantage of trigonometric identities

(Svaneborg & Pedersen, 2000) in equation (4). For example,

sinð2xÞ does not need to be explicitly evaluated if sinðxÞ and

cosðxÞ are already known. Because of its simple OðnNÞ linear

scaling, the GV method can easily be distributed on graphical

processing units (GPUs) as well.
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Figure 3
The processing time required to calculate IðqÞ versus the number of atoms
using the GV method and an ME technique (Svergun et al., 1998).
Timings for the GV method are shown for n ¼ f5; 11; 21; 31g vectors
(orange). The ME timings for L ¼ f5; 10; 20; 30g harmonics are displayed
(violet).

Table 2
The speed of the GV and ME methods at different levels of accuracy.

For each molecule, n=L correspond to the minimum number of vectors/harmonics required for the average deviation between the Debye formula and the GV/ME
approximations to be less than 10, 7.5, 5 and 2.5%. The corresponding processing times for the GV method, the ME package CRYSON (Svergun et al., 1998) and
the Debye formula are listed in milliseconds within square brackets. Since the maximum value of L cannot exceed 50, the CRYSON timing for MCM at � = 2.5% is
not available.

10% match 7.5% match 5% match 2.5% match

Molecule n L n L n L n L Exact

Lysozyme 11 [1.2] 5 [3.5] 25 [2.4] 5 [5.9] 29 [3.0] 6 [6.3] 35 [3.7] 7 [8.1] [6.5]
Ferritin 19 [24] 15 [59] 25 [33] 15 [54] 25 [33] 16 [60] 47 [62] 18 [72] [1300]
DNA 21 [38] 26 [170] 21 [38] 28 [190] 25 [46] 30 [210] 31 [59] 34 [270] [2400]
MCM 15 [38] 30 [300] 17 [45] 35 [370] 79 [200] 43 [550] 149 [390] >50 [–] [5010]



5. Future extensions
While we focused on examples involving a single type of

biomolecule in a dilute solution, the GV approach can be

applied to a host of other situations. Ensembles of noninter-

acting molecules contain simple additive contributions to the

total scattering intensity (Blanchet & Svergun, 2013). The

Debye formula has become increasingly used to interpret

neutron and X-ray powder diffraction data for nanocrystalline

systems (Cademartiri et al., 2006; Chiche et al., 2008; Thomas,

2009; Cervellino et al., 2003, 2010; Oddershede et al., 2008;

Beyerlein et al., 2011, 2010). As with small-angle scattering,

the analysis is limited by the severe OðN2Þ computational

overhead (Gelisio et al., 2010; Beyerlein et al., 2011). Since the

GVapproximation technique converges to the Debye formula,

it could be applicable to powder diffraction as well.

In this paper, we determined the number of vectors

required by comparing the GV approximation with the Debye

formula. However, the Debye formula is computationally

expensive to calculate. In order to determine the sufficient

number of vectors without comparing to the Debye formula or

experimental data, we suggest the following procedure.

Compute the scattering profile using n and nþ 2 vectors

(since n must be odd), which we denote by I
ðnÞ
GV and I

ðnþ2Þ
GV ,

respectively. If the difference between the curves is sufficiently

small, I
ðnþ2Þ
GV is a good approximation. If the difference is not

small, calculate I
ðnþ4Þ
GV , compare it with I

ðnþ2Þ
GV , and repeat the

process. The ‘difference’ between curves may be quantified on

the basis of the user’s favorite metric: the relative deviation

described in x4, root-mean square deviation etc.

Though not considered in this paper, the bulk solvent

displaced by the macromolecules and the surrounding

hydration layer also contribute to the scattering intensity

(Svergun et al., 1995, 1998). These effects may be directly

incorporated within the GV method using an atomic repre-

sentation of the solvent. The displaced solvent has long been

described by dummy atoms located at the position of each

solute atom (Svergun et al., 1995; Fraser et al., 1978; Poitevin

et al., 2011; Schneidman-Duhovny et al., 2010). Explicit

representation of the excluded solvent is also possible

(Grishaev et al., 2010). The hydration layer can be constructed

by including denser water molecules at the solute/solvent

interface (Svergun et al., 2001; Perkins, 2001; Yang et al., 2009;

Grishaev et al., 2010; Merzel & Smith, 2002). For these cases,

the sum in equation (4) would run over solute atoms and

explicit solvent atoms. Alternatively, the scattering length of

each solute atom can be renormalized according to its solvent-

accessible surface area (Schneidman-Duhovny et al., 2010).

Just as in previous studies, coefficients of scattering lengths/

amplitudes may be included within our approximation in

order to fit experimental data. In FoXS (Schneidman-

Duhovny et al., 2010) for example, the effective scattering

length of each solute atom is modeled as beff
j ¼ bv

j�

c1bs
j þ c2sjb

w
j , where bv

j , bs
j and bw

j correspond to the scattering

lengths of the atom in vacuo, the dummy atom and the water

in the neighboring hydration layer, respectively. sj is the

solvent-accessible surface area of the atom, while c1 and c2 are

fit parameters used to adjust the total excluded volume of the

atoms and the density of the hydration layer, respectively

[analogous to r0 and �� in CRYSOL (Svergun et al., 1995)]. In

our treatment, beff
j would replace bj in equation (4). Regard-

less of the chosen solvent description, the GV method

provides a fast and accurate engine for scattering calculations,

upon which any atomic model can be built.

The processing time of the GV method can be made to scale

sub-linearly with N when the atoms are identical and lie on a

lattice. This is the case for several powder diffraction studies

(Cervellino et al., 2003, 2010; Chiche et al., 2008; Thomas, 2009;

Oddershede et al., 2008; Beyerlein et al., 2011, 2010) and most

ab initio bead-modeling techniques. On a lattice, the position

of each atom may be written as a linear combination of

primitive vectors a1;2;3. In any one of these directions aj, the

positions of the atoms along a single row are given by

rp ¼ r0 þ paj, where p runs from 0 to Nr � 1. The scattering

amplitude of that row is a simple geometric series:

Arow qð Þ ¼ b
XNr�1

p¼0

exp �iðq � r0 þ pq � ajÞ
� �

¼ b
sin Nrq � aj=2
� �

sin q � aj=2
� � exp �i q � r0 þ

ðNr � 1Þq � aj

2

� �� 	
; ð8Þ

where Nr is the number of atoms in the specific row and b is

the scattering length. Equation (2) would then reduce to sums

over rows, effectively lowering the dimension of the calcula-

tion. The resulting computational overhead scales sub-linearly

with the number of atoms: OðnN�Þ, where �< 1. The value of

� depends on the shape of the molecule. For example,

applying this technique to a cube made on an N-atom lattice

would be an OðnN2=3Þ task.

The GV method will also be useful for rapidly analyzing

atomically detailed simulations of dense protein solutions

(McGuffee & Elcock, 2006; Chaudhri et al., 2012; Mereghetti

et al., 2010). Though the scattering intensity is normally

calculated under the assumption that orientational correla-

tions between molecules are negligible (Roe, 2000), these

correlations may be significant in highly concentrated protein

solutions. For such systems, IðqÞ must be calculated directly

from its definition [equations (1) and (2)]. Using the GV

approximation, the sum in equation (4) would run over the

atoms of all proteins in the simulation and be averaged over

the entire trajectory. The scattering profile could then be

directly compared with experimental data.

6. Conclusion

We have presented an efficient and mathematically trans-

parent technique for calculating the scattering profiles of

systems described on an atomic level. For a given level of

accuracy, the GV method is comparable in speed to the ME

approach for quasi-spherical molecules but faster for aniso-

tropic shapes. Conversely, for a given level of speed, the GV

approximation is more accurate for irregular shapes. In

addition to interpreting small-angle scattering experiments,
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this approach also has potential applications in powder

diffraction and protein simulations. Given its utility, the GV

technique should be a valuable extension to any scattering

toolbox.
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